13 research outputs found

    Parallel particle swarm optimization algoritms in nuclear problems

    Get PDF
    Particle Swarm Optimization (PSO) is a population-based metaheuristic (PBM), in which solution candidates evolve through simulation of a simplified social adaptation model. Putting together robustness, efficiency and simplicity, PSO has gained great popularity. Many successful applications of PSO are reported, in which PSO demonstrated to have advantages over other well-established PBM. However, computational costs are still a great constraint for PSO, as well as for all other PBMs, especially in optimization problems with time consuming objective functions. To overcome such difficulty, parallel computation has been used. The default advantage of parallel PSO (PPSO) is the reduction of computational time. Master-slave approaches, exploring this characteristic are the most investigated. However, much more should be expected. It is known that PSO may be improved by more elaborated neighborhood topologies. Hence, in this work, we develop several different PPSO algorithms exploring the advantages of enhanced neighborhood topologies implemented by communication strategies in multiprocessor architectures. The proposed PPSOs have been applied to two complex and time consuming nuclear engineering problems: i) reactor core design (CD) and ii) fuel reload (FR) optimization. After exhaustive experiments, it has been concluded that: i) PPSO still improves solutions after many thousands of iterations, making prohibitive the efficient use of serial (non-parallel) PSO in such kind of realworld problems and ii) PPSO with more elaborated communication strategies demonstrated to be more efficient and robust than the master-slave model. Advantages and peculiarities of each model are carefully discussed in this work

    Applying a neuro-fuzzy approach for transient identification in a nuclear power plant

    Get PDF
    Transient identification in Nuclear Power Plant (NPP) is often a very hard task and may involve a great amount of human cognition. The early identification of unexpected departures from steady state behavior is an essential step for the operation, control and accident management in NPPs. The bases for the transient identification relay on the evidence that different system faults and anomalies lead to different pattern evolution in the involved process variables. During an abnormal event, the operator must monitor a great amount of information from the instruments that represents a specific type of event. Several systems based on specialist systems, neuralnetworks, and fuzzy logic have been developed for transient identification. In the work, we investigate the possibility of using a Neuro-Fuzzy modeling tool for efficient transient identification, aiming to helping the operator crew to take decisions relative to the procedure to be followed in situations of accidents/transients at NPPs. The proposed system uses artificial neural networks (ANN) as first level transient diagnostic. After the ANN has done the preliminary transient type identification, a fuzzy-logic system analyzes the results emitting reliability degree of it. A preliminary evaluation of the developed system was made at the Human-System Interface Laboratory (LABIHS). The obtained results show that the system can help the operators to take decisions during transients/accidents in the plant

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    "ProGenIS: Programable Genetic Island System" - uma ferramenta genérica para desenvolvimento de Algoritmos Genéticos Paralelos utilizando o Modelo de Ilhas: apresentação do sistema e estado de desenvolvimento atual

    No full text
    Aqui é apresentado o programa ProGenIS - "Programable Genetic Island System", uma ferramenta genérica para implementação de Algoritmos Genéticos Paralelos (AGP) desenvolvido segundo o paradigma do Modelo de Ilhas (MI). O fato de utilizar o MI o torna propício para execução em redes comuns de computadores, proporcionando, assim, uma Computação Evolucionária Paralela de baixo custo. O sistema ainda se encontra em fase final de implementação, faltando alguns detalhes relacionados com a interface homem-máquina, no entanto, já está sendo aplicado à alguns problemas da engenharia nuclear. O ProGenIS está sendo desenvolvido em linguagem Java, o que o torna independente de plataforma, o que propicia sua utilização em arquiteturas computacionais heterogênea

    Surveillance test policy optimization through genetic algorithms using non-periodic intervention frequencies and considering seasonal constraints

    No full text
    In order to maximize systems average availability during a given period of time, it has recently been developed a non-periodic surveillance test optimization methodology based on genetic algorithms (GA). The fact of allowing non-periodic tests turns the solution space much more flexible and schedules can be better adjusted, providing gains in the overall system average availability, when compared to those obtained by an optimized periodic test scheme. This approach, however, turns the optimization problem more complex. Hence, the use of a powerful optimization technique, such as GA, is required. Considering that some particular features of certain systems can turn it advisable to introduce other specific constraints in the optimization problem, this work investigates the application of seasonal constraints for the set of the Emergency Diesel Generation of a typical four-loop pressurized water reactor in order to planning and optimizing its surveillance test policy. In this analysis, the growth of the blackout accident probability during summer, due to electrical power demand increases, was considered. Here, the used model penalizes surveillance test interventions when the blackout probability is higher. Results demonstrate the ability of the method in adapting the surveillance test policy to seasonal constraints. The knowledge acquired by the GA during the searching process has lead to test schedules that drastically minimize test interventions at periods of high blackout probability. It is compensated by more frequent redistributed tests through the periods of low blackout probability in order to improve on the overall average availability at the system level

    Volume fraction calculation in multiphase system such as oil-water-gas using neutron

    No full text
    Multi-phase flows are common in diverse industrial sectors and the attainment of the volume fraction of each element that composes the flow system presents difficulties for the engineering process, therefore, to determine them is very important. In this work is presented methodology for determination of volume fractions in annular three-phase flow systems, such as oil-water-gas, based on the use of nuclear techniques and artificial intelligence. Using the principle of the fast-neutron transmission/scattering, come from an isotopic 241Am-Be source, and two point detectors, is gotten measured that they are influenced by the variations of the volume fractions of each phase present in the flow. An artificial neural network is trained to correlate such measures with the respective volume fractions. In order to get the data for training of the artificial neural network without necessity to carry through experiments, MCNP-X code is used, that simulates computational of the neutrons transport. The methodology is sufficiently advantageous, therefore, allows to develop a measurement system capable to determine the fractions of the phases (oil-water-gas), with proper requirements of each petroliferous installation and with national technology contributing, possibly, with reduction of costs and increase of productivity
    corecore